
D05 – Integral Equations

Chapter D05

Integral Equations

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Classification of Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Structure of Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Singular and Weakly Singular Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Fredholm Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5.2 Equations of the first kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5.3 Equations of the second kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 Volterra Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6.1 Equations of the first kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6.2 Equations of the second kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Recommendations on Choice and Use of Available Routines 5
3.1 Fredholm Equations of Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Volterra Equations of Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Volterra Equations of First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Utility Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 User-supplied Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Index 6

5 Routines Withdrawn or Scheduled for Withdrawal 7

6 References 7

[NP3390/19/pdf] D05.1



Introduction – D05 D05 – Integral Equations

1 Scope of the Chapter

This chapter is concerned with the numerical solution of integral equations. Provision will be made for
most of the standard types of equation (see below). The following are, however, specifically excluded:

(a) Equations arising in the solution of partial differential equations by integral equation methods. In
cases where the prime purpose of an algorithm is the solution of a partial differential equation it
will normally be included in Chapter D03.

(b) Calculation of inverse integral transforms. This problem falls within the ambit of Chapter C06.

2 Background to the Problems
2.1 Introduction

Any functional equation in which the unknown function appears under the sign of integration is called
an integral equation. Integral equations arise in a great many branches of science; for example, in
potential theory, acoustics, elasticity, fluid mechanics, radiative transfer, theory of population, etc. In
many instances the integral equation originates from the conversion of a boundary-value problem or an
initial-value problem associated with a partial or an ordinary differential equation, but many problems
lead directly to integral equations and cannot be formulated in terms of differential equations.

Integral equations are of many types; here we attempt to indicate some of the main distinguishing features
with particular regard to the use and construction of algorithms.

2.2 Classification of Integral Equations

In the classical theory of integral equations one distinguishes between Volterra equations and Fredholm
equations. In a Fredholm equation the region of integration is fixed, whereas in a Volterra equation the
region is variable. Thus, the equation

cy(t) = f(t) + λ

∫ b

a

K(t, s, y(s)) ds, a ≤ t ≤ b (1)

is an example of Fredholm equation, and the equation

cy(t) = f(t) + λ

∫ t

a

K(t, s, y(s)) ds, a ≤ t (2)

is an example of a Volterra equation.

Here the forcing function f(t) and the kernel function K(t, s, y(s)) are prescribed, while y(t) is the
unknown function to be determined. (More generally the integration and the domain of definition of the
functions may extend to more than one dimension.) The parameter λ is often omitted; it is, however, of
importance in certain theoretical investigations (e.g., stability) and in the eigenvalue problem discussed
below.

If in (1), or (2), c = 0, the integral equation is said to be of the first kind. If c = 1, the equation is said
to be of the second kind.

Equations (1) and (2) are linear if the kernel K(t, s, y(s)) = k(t, s)y(s), otherwise they are nonlinear.

Note. In a linear integral equation, k(t, s) is usually referred to as the kernel. We adopt this convention
throughout.

These two types of equations are broadly analogous to problems of initial- and boundary-value type for an
ordinary differential equation (ODE); thus the Volterra equation, characterised by a variable upper limit
of integration, is amenable to solution by methods of marching type whilst most methods for treating
Fredholm equations lead ultimately to the solution of an approximating system of simultaneous algebraic
equations. For comprehensive discussion of numerical methods see Atkinson [1], Baker [2], Brunner and
van der Houwen [3] and Delves and Walsh [5]. In what follows, the term ‘integral equation’ is used in its
general sense, and the type is distinguished when appropriate.
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2.3 Structure of Kernel

When considering numerical methods for integral equations, particular attention should be paid to the
character of the kernel, which is usually the main factor governing the choice of an appropriate quadrature
formula or system of approximating functions. Various commonly occurring types of singularity call for
individual treatment.

Likewise provision can be made for cases of symmetry, periodicity or other special structure, where the
solution may have special properties and/or economies may be effected in the solution process. We note
in particular the following cases to which we shall often have occasion to refer in the description of
individual algorithms

(a) A linear integral equation with a kernel k(t, s) = k(s, t) is said to be symmetric. This property
plays a key role in the theory of Fredholm integral equations.

(b) If k(t, s) = k(a+ b− t, a+ b− s) in a linear integral equation, the kernel is called centro-symmetric.

(c) If in Equations (1) or (2) the kernel has the form K(t, s, y(s)) = k(t − s)g(s, y(s)), the equation is
called a convolution integral equation; in the linear case g(s, y(s)) = y(s).

(d) If the kernel in (1) has the form

K(t, s, y(s)) = K1(t, s, y(s)), a ≤ s ≤ t,
K(t, s, y(s)) = K2(t, s, y(s)), t < s ≤ b,

where the functions K1 and K2 are well-behaved, whilst K or its s-derivative is possibly
discontinuous, may be described as discontinuous or of ‘split’ type; in the linear case K(t, s, y(s)) =
k(t, s)y(s) and consequently K1 = k1y and K2 = k2y. Examples are the commonly occurring
kernels of the type k(|t − s|) and the Green’s functions (influence functions) which arise in the
conversion of ODE boundary-value problems to integral equations. It is also of interest to note that
the Volterra equation (2) may be conceived as a Fredholm equation with kernel of split type, with
K2(t, s, y(s)) ≡ 0; consequently methods designed for the solution of Fredholm equations with split
kernels are also applicable to Volterra equations.

2.4 Singular and Weakly Singular Equations

An integral equation may be called singular if either

(a) its kernel contains a singularity, or
(b) the range of integration is infinite,

and it is said to be weakly-singular if the kernel becomes infinite at s = t.

Sometimes a solution can be effected by a simple adaptation of a method applicable to a non-singular
equation: for example, an infinite range may be truncated at a suitably chosen point. In other cases,
however, theoretical considerations will dictate the need for special methods and algorithms. Examples
are:

(i) Integral equations with singular kernels of Cauchy type;

(ii) Equations of Wiener–Hopf type;

(iii) Various dual integral equations arising in the solution of boundary-value problems of mathematical
physics;

(iv) The well-known Abel integral equation, an equation of Volterra type, whose kernel contains an
inverse square-root singularity at s = t.

Problems of inversion of integral transforms also fall under this heading but, as already remarked, they
lie outside the scope of this chapter.

2.5 Fredholm Integral Equations
2.5.1 Eigenvalue problem

Closely connected with the linear Fredholm integral equation of the second kind is the eigenvalue problem
represented by the homogeneous equation

y(t)− λ

∫ b

a

k(t, s)y(s) ds = 0, a ≤ t ≤ b. (3)
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If λ is chosen arbitrarily this equation in general possesses only the trivial solution y(t) = 0. However, for
a certain critical set of values of λ, the characteristic values or eigenvalues (the latter term is sometimes
reserved for the reciprocals µ = 1/λ), there exist non-trivial solutions y(t), termed characteristic functions
or eigenfunctions, which are of fundamental importance in many investigations. The analogy with the
eigenproblem of linear algebra is readily apparent, and indeed most methods of solution of equation (3)
entail reduction to an approximately equivalent algebraic problem

(K − µI)y = 0. (4)

2.5.2 Equations of the first kind

The Fredholm integral equation of the first kind
∫ b

a

k(t, s)y(s) ds = f(t), a ≤ t ≤ b, (5)

belong to the class of ‘ill-posed’ problems; even supposing that a solution corresponding to the prescribed
f(t) exists, a slight perturbation of f(t) may give rise to an arbitrarily large variation in the solution y(t).
Hence the equation may be closely satisfied by a function bearing little resemblance to the ‘true’ solution.
The difficulty associated with this instability is aggravated by the fact that in practice the specification
of f(t) is usually inexact.

Nevertheless a great many physical problems (e.g., in radiography, spectroscopy, stereology, chemical
analysis) are appropriately formulated in terms of integral equations of the first kind, and useful and
meaningful ‘solutions’ can be obtained with the aid of suitable stabilising procedures. See Chapters 12
and 13 of Delves and Walsh [5] for further discussion and references.

2.5.3 Equations of the second kind

Consider the nonlinear Fredholm equation of the second kind

y(t) = f(t) +
∫ b

a

K(t, s, y(s)) ds, a ≤ t ≤ b. (6)

The numerical solution of equation (6) is usually accomplished either by simple iteration or by a more
sophisticated iterative scheme based on Newton’s method; in the latter case it is necessary to solve a
sequence of linear integral equations. Convergence may be demonstrated subject to suitable conditions
of Lipschitz continuity of the functions K with respect to the argument y.

Examples of Fredholm type (for which the provision of algorithms is contemplated) are:

(a) the Uryson equation

u(t)−
∫ 1

0

F (t, s, u(s)) ds = 0, 0 ≤ t ≤ 1, (7)

(b) the Hammerstein equation

u(t)−
∫ 1

0

k(t, s)g(s, u(s)) ds = 0, 0 ≤ t ≤ 1, (8)

where F and g are arbitrary functions.

2.6 Volterra Integral Equations
2.6.1 Equations of the first kind

Consider the Volterra integral equation of the first kind
∫ t

a

k(t, s)y(s) ds = f(t), a ≤ t. (9)

Clearly it is necessary that f(a) = 0; otherwise no solution to (9) can exist.
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The following types of Volterra integral equations of the first kind occur in real life problems:

equations with unbounded kernel at s = t,

equations with sufficiently smooth kernel.

These types belong also to the class of ‘ill-posed’ problems. However, the instability is appreciably less
severe in the equations with unbounded kernel. In general, a non-singular Volterra equation of the first
kind presents less computational difficulty than the Fredholm equation (5) with a smooth kernel.

A Volterra equation of the first kind may, under suitable conditions, be converted by differentiation to
one of the second kind or by integration by parts to an equation of the second kind for the integral of
the wanted function.

2.6.2 Equations of the second kind

A very general Volterra equation of the second kind is given by

y(t) = f(t) +
∫ t

a

K(t, s, y(s)) ds, a ≤ t. (10)

The resemblance of Volterra equations to ODEs suggests that the underlying methods for ODE problems
can be applied to Volterra equations. Indeed this turns out to be the case. The main advantages
of implementing these methods are their well-developed theoretical background, i.e., convergence and
stability, see Brunner and van der Houwen [3], Wolkenfelt [6].

Many Volterra integral equations arising in real life problems have a convolution kernel (cf. Section
2.3(c)), see [3] for references. However, a subclass of these equations which have kernels of the form

k(t − s) =
M∑

j=0

λj(t − s)j , (11)

where {λj} are real, can be converted into a system of linear or nonlinear ODEs, see [3].

For more information on the theoretical and the numerical treatment of integral equations we refer the
user to Atkinson [1], Baker [2], Brunner and van der Houwen [3], Cochran [4] and Delves and Walsh [5].

3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The choice of routine will depend first of all upon the type of integral equation to be solved.

3.1 Fredholm Equations of Second Kind

(a) Linear equations

D05AAF is applicable to an equation with a discontinuous or ‘split’ kernel as defined in 2.3.(d).
Here, however, both the functions k1 and k2 are required to be defined (and well-
behaved) throughout the square a ≤ s, t ≤ b.

D05ABF is applicable to an equation with a smooth kernel. Note that D05AAF may also be
applied to this case, by setting k1 = k2 = k, but D05ABF is more efficient.

3.2 Volterra Equations of Second Kind

(a) Linear equations

D05AAF may be used to solve a Volterra equation by defining k2 (or k1) to be identically zero.
(See also (b).)
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(b) Nonlinear equations

D05BAF is applicable to a nonlinear convolution Volterra integral equation of the second kind.
The kernel function has the form

K(t, s, y(s)) = k(t − s)g(s, y(s)).

The underlying methods used in the routine are the reducible linear multi-step methods.
The user has a choice of variety of these methods. This routine can also be used for
linear g.

D05BDF is applicable to a nonlinear convolution equation having a weakly-singular kernel (Abel).
The kernel function has the form

K(t, s, y(s)) =
k(t − s)√

t − s
g(s, y(s)).

The underlying methods used in the routine are the fractional linear multistep methods
based on BDF methods. This routine can also be used for linear g.

3.3 Volterra Equations of First Kind

(a) Linear equations

See (b).

(b) Nonlinear quations

D05BEF is applicable to a nonlinear equation having a weakly-singular kernel (Abel). The kernel
function has the form

K(t, s, y(s)) =
k(t − s)√

t − s
g(s, y(s)).

The underlying methods used in the routine are the fractional linear multistep methods
based on BDF methods. This routine can also be used for linear g.

3.4 Utility Routines

D05BWF generates the weights associated with Adams and BDF linear multistep methods. These
weights can be used for the solution of non-singular Volterra integral and integro-differential
equations of general type.

D05BYF generates the weights associated with BDF linear multistep methods. These weights can be
used for the solution of weakly-singular Volterra (Abel) integral equations of general type.

3.5 User-supplied Routines

All the routines in this chapter require the user to supply functions or real procedures defining the kernels
and other given functions in the equations. It is important to test these independently before using them
in conjunction with NAG Library routines.

4 Index

Fredholm equation of second kind,
linear, non-singular discontinuous or ‘split’ kernel: D05AAF
linear, non-singular smooth kernel: D05ABF

Volterra equation of second kind,
linear, non-singular kernel: D05AAF
nonlinear, non-singular, convolution equation: D05BAF
nonlinear, weakly-singular, convolution equation (Abel): D05BDF

Volterra equation of first kind,
nonlinear, weakly-singular, convolution equation (Abel): D05BEF

Weight generating routines,
weights for general solution of Volterra equations: D05BWF
weights for general solution of Volterra equations with
weakly-singular kernel: D05BYF
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5 Routines Withdrawn or Scheduled for Withdrawal

None since Mark 13.
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